If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X-203=0
a = 1; b = 8; c = -203;
Δ = b2-4ac
Δ = 82-4·1·(-203)
Δ = 876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{876}=\sqrt{4*219}=\sqrt{4}*\sqrt{219}=2\sqrt{219}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{219}}{2*1}=\frac{-8-2\sqrt{219}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{219}}{2*1}=\frac{-8+2\sqrt{219}}{2} $
| 4(2x-2)=6(3x+2)x= | | 11p+29=3(5p-1) | | a+6-6a=-14 | | 8n+9n=-31 | | y=107520+861 | | 2/5(1/8-4x)-3/8=5/8 | | 2x+71+9=90 | | 7x2-8=13 | | 7p+2=5+8 | | 4.9x^2+25x+31.9=0 | | -2t+7=-14+3t+1 | | 5x-3.25=14.5 | | 1/8=x/4 | | 13d+10=17d-14 | | -2x+-6+40=180 | | X+2/3+3x=10 | | -15j=-17-14j | | 6s-8=7s | | 5x+5+60=180 | | 18+5u=6u | | 1538+4.3p=-14.04+5p+1.53 | | 4x+36=6x-2 | | 10+5r-8r=-4r-2 | | -3x^2+24x-50=0 | | B=-3.2+1.6a | | 4+6q=-3-q | | X-20-x=180 | | 5(6+2s)=-29 | | 8m=8.3m+4.05 | | 24x-3x^2=45 | | -17b=-13-18b | | -13n+4+20=-5n-16 |